forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Automated]: Update Java API docs #1
Open
github-actions
wants to merge
1
commit into
gh-pages
Choose a base branch
from
gh-pages-pr
base: gh-pages
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
github-actions
bot
force-pushed
the
gh-pages-pr
branch
2 times, most recently
from
November 1, 2022 17:16
d3ce9c7
to
259c90f
Compare
github-actions
bot
force-pushed
the
gh-pages-pr
branch
from
November 2, 2022 01:08
259c90f
to
234d61a
Compare
snnn
pushed a commit
that referenced
this pull request
Dec 8, 2023
### Description Hello we(@lixing-star) are the developers of loongson team. We add 128 (lsx), 256 (lasx) vector optimization code for the loongarch architecture [100% tests passed, 0 tests failed out of 7](https://cloud.a-boat.cn:2021/api/public/dl/6831z1Bi?inline=true) ### Development Environments1 ``` CPU: Loongson-3C5000L uname -a: Linux localhost.localdomain 4.19.190-6.4.lns8.loongarch64 #1 SMP Thu Jul 14 12:08:04 CST 2022 loongarch64 loongarch64 loongarch64 GNU/Linux ``` ### LonngArch Documents - [LoongArch Reference Manual - Volume 1: Basic Architecture: This manual describes the basic part of the LoongArch architecture.](https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html) - [LoongArch ELF psABI: This manual describes the LoongArch ELF psABI.](https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html) - [more](https://loongson.github.io/LoongArch-Documentation/README-EN.html)
snnn
pushed a commit
that referenced
this pull request
Jan 6, 2025
### Description Add [Lean Attention](https://arxiv.org/abs/2405.10480) and the integration with MultiHeadAttention operator for LLM in GPU. LeanAttention speeds up self-attention for the token-generation phase (decode-phase) of decoder-only transformer models, especially on long context lengths. - [x] Initial implementation of Lean Attention (by Srikant Bharadwaj) - [x] Integration with MultiHeadAttention operator - [x] Add parity tests - [x] Add benchmark #### Implementation Details (1) Lean Attention is enabled in build for Linux, and disabled for Windows (2) Lean Attention is disabled by default. Need enable it through cuda provider option sdpa_kernel, or use environment variable `ORT_ENABLE_LEAN_ATTENTION=1` (3) It only works for token-generation (sequence_length==1, past_sequence_length > 0). (4) Like flash attention, it only works in Ampere or newer GPU. We can revisit #1 and #2 after comparing with DecoderMaskedMultiHeadAttention and XQA kernels. #### Benchmark ``` cd onnxruntime/test/python/transformers /bin/bash benchmark_mha.sh lean ``` Example outputs in H100: Note that past and present does not share buffer for MHA for now, so we can see low tflops. The relative ratio will change after buffer sharing is enabled. But we expect that the order (kernel A is faster than B) will remain the same after buffer sharing is enabled. Note that common settings `sequence_length=1; causal=True;attn_bias=None;cuda_graph=False` are not shown in the below table. batch_size | past_sequence_length | num_heads | head_size | average_latency | tflops | kernel -- | -- | -- | -- | -- | -- | -- 1 | 512 | 16 | 64 | 0.000059 | 0.0178 | ort:flash 1 | 512 | 16 | 64 | 0.000068 | 0.0155 | ort:efficient 1 | 512 | 16 | 64 | 0.000065 | 0.0161 | ort:math 1 | 512 | 16 | 64 | 0.000060 | 0.0176 | ort:lean 1 | 512 | 32 | 128 | 0.000062 | 0.0674 | ort:flash 1 | 512 | 32 | 128 | 0.000064 | 0.0661 | ort:efficient 1 | 512 | 32 | 128 | 0.000067 | 0.0625 | ort:math 1 | 512 | 32 | 128 | 0.000062 | 0.0678 | ort:lean 1 | 1024 | 16 | 64 | 0.000061 | 0.0345 | ort:flash 1 | 1024 | 16 | 64 | 0.000086 | 0.0244 | ort:efficient 1 | 1024 | 16 | 64 | 0.000065 | 0.0322 | ort:math 1 | 1024 | 16 | 64 | 0.000063 | 0.0332 | ort:lean 1 | 1024 | 32 | 128 | 0.000075 | 0.1125 | ort:flash 1 | 1024 | 32 | 128 | 0.000088 | 0.0951 | ort:efficient 1 | 1024 | 32 | 128 | 0.000079 | 0.1068 | ort:math 1 | 1024 | 32 | 128 | 0.000072 | 0.1171 | ort:lean 1 | 2048 | 16 | 64 | 0.000069 | 0.0606 | ort:flash 1 | 2048 | 16 | 64 | 0.000125 | 0.0336 | ort:efficient 1 | 2048 | 16 | 64 | 0.000064 | 0.0655 | ort:lean 1 | 2048 | 32 | 128 | 0.000098 | 0.1720 | ort:flash 1 | 2048 | 32 | 128 | 0.000132 | 0.1270 | ort:efficient 1 | 2048 | 32 | 128 | 0.000092 | 0.1828 | ort:lean 1 | 4096 | 16 | 64 | 0.000076 | 0.1097 | ort:flash 1 | 4096 | 16 | 64 | 0.000207 | 0.0406 | ort:efficient 1 | 4096 | 16 | 64 | 0.000069 | 0.1209 | ort:lean 1 | 4096 | 32 | 128 | 0.000140 | 0.2394 | ort:flash 1 | 4096 | 32 | 128 | 0.000213 | 0.1575 | ort:efficient 1 | 4096 | 32 | 128 | 0.000139 | 0.2419 | ort:lean 1 | 8192 | 16 | 64 | 0.000104 | 0.1609 | ort:flash 1 | 8192 | 16 | 64 | 0.000392 | 0.0428 | ort:efficient 1 | 8192 | 16 | 64 | 0.000093 | 0.1809 | ort:lean 1 | 8192 | 32 | 128 | 0.000212 | 0.3160 | ort:flash 1 | 8192 | 32 | 128 | 0.000360 | 0.1866 | ort:efficient 1 | 8192 | 32 | 128 | 0.000212 | 0.3162 | ort:lean 1 | 16384 | 16 | 64 | 0.000139 | 0.2410 | ort:flash 1 | 16384 | 16 | 64 | 0.000731 | 0.0459 | ort:efficient 1 | 16384 | 16 | 64 | 0.000136 | 0.2465 | ort:lean 1 | 16384 | 32 | 128 | 0.000361 | 0.3722 | ort:flash 1 | 16384 | 32 | 128 | 0.000667 | 0.2014 | ort:efficient 1 | 16384 | 32 | 128 | 0.000357 | 0.3765 | ort:lean 1 | 32768 | 16 | 64 | 0.000210 | 0.3194 | ort:flash 1 | 32768 | 16 | 64 | 0.001428 | 0.0470 | ort:efficient 1 | 32768 | 16 | 64 | 0.000209 | 0.3211 | ort:lean 1 | 32768 | 32 | 128 | 0.000659 | 0.4074 | ort:flash 1 | 32768 | 32 | 128 | 0.001270 | 0.2114 | ort:efficient 1 | 32768 | 32 | 128 | 0.000651 | 0.4123 | ort:lean 1 | 65536 | 16 | 64 | 0.000355 | 0.3785 | ort:flash 1 | 65536 | 16 | 64 | 0.002736 | 0.0491 | ort:efficient 1 | 65536 | 16 | 64 | 0.000349 | 0.3845 | ort:lean 1 | 65536 | 32 | 128 | 0.001251 | 0.4290 | ort:flash 1 | 65536 | 32 | 128 | 0.002480 | 0.2165 | ort:efficient 1 | 65536 | 32 | 128 | 0.001239 | 0.4333 | ort:lean 4 | 512 | 16 | 64 | 0.000063 | 0.0665 | ort:flash 4 | 512 | 16 | 64 | 0.000069 | 0.0607 | ort:efficient 4 | 512 | 16 | 64 | 0.000066 | 0.0634 | ort:math 4 | 512 | 16 | 64 | 0.000062 | 0.0674 | ort:lean 4 | 512 | 32 | 128 | 0.000100 | 0.1677 | ort:flash 4 | 512 | 32 | 128 | 0.000099 | 0.1703 | ort:efficient 4 | 512 | 32 | 128 | 0.000108 | 0.1557 | ort:math 4 | 512 | 32 | 128 | 0.000092 | 0.1818 | ort:lean 4 | 1024 | 16 | 64 | 0.000077 | 0.1094 | ort:flash 4 | 1024 | 16 | 64 | 0.000099 | 0.0850 | ort:efficient 4 | 1024 | 16 | 64 | 0.000081 | 0.1038 | ort:math 4 | 1024 | 16 | 64 | 0.000072 | 0.1161 | ort:lean 4 | 1024 | 32 | 128 | 0.000143 | 0.2343 | ort:flash 4 | 1024 | 32 | 128 | 0.000137 | 0.2447 | ort:efficient 4 | 1024 | 32 | 128 | 0.000150 | 0.2245 | ort:math 4 | 1024 | 32 | 128 | 0.000135 | 0.2496 | ort:lean 4 | 2048 | 16 | 64 | 0.000096 | 0.1757 | ort:flash 4 | 2048 | 16 | 64 | 0.000156 | 0.1078 | ort:efficient 4 | 2048 | 16 | 64 | 0.000089 | 0.1892 | ort:lean 4 | 2048 | 32 | 128 | 0.000223 | 0.3010 | ort:flash 4 | 2048 | 32 | 128 | 0.000217 | 0.3101 | ort:efficient 4 | 2048 | 32 | 128 | 0.000209 | 0.3209 | ort:lean 4 | 4096 | 16 | 64 | 0.000137 | 0.2448 | ort:flash 4 | 4096 | 16 | 64 | 0.000256 | 0.1312 | ort:efficient 4 | 4096 | 16 | 64 | 0.000133 | 0.2530 | ort:lean 4 | 4096 | 32 | 128 | 0.000389 | 0.3450 | ort:flash 4 | 4096 | 32 | 128 | 0.000376 | 0.3574 | ort:efficient 4 | 4096 | 32 | 128 | 0.000354 | 0.3794 | ort:lean 4 | 8192 | 16 | 64 | 0.000210 | 0.3198 | ort:flash 4 | 8192 | 16 | 64 | 0.000453 | 0.1480 | ort:efficient 4 | 8192 | 16 | 64 | 0.000206 | 0.3260 | ort:lean 4 | 8192 | 32 | 128 | 0.000725 | 0.3705 | ort:flash 4 | 8192 | 32 | 128 | 0.000693 | 0.3874 | ort:efficient 4 | 8192 | 32 | 128 | 0.000653 | 0.4114 | ort:lean 4 | 16384 | 16 | 64 | 0.000355 | 0.3782 | ort:flash 4 | 16384 | 16 | 64 | 0.000849 | 0.1581 | ort:efficient 4 | 16384 | 16 | 64 | 0.000346 | 0.3874 | ort:lean 4 | 16384 | 32 | 128 | 0.001395 | 0.3848 | ort:flash 4 | 16384 | 32 | 128 | 0.001337 | 0.4017 | ort:efficient 4 | 16384 | 32 | 128 | 0.001252 | 0.4288 | ort:lean 4 | 32768 | 16 | 64 | 0.000647 | 0.4146 | ort:flash 4 | 32768 | 16 | 64 | 0.001649 | 0.1628 | ort:efficient 4 | 32768 | 16 | 64 | 0.000639 | 0.4204 | ort:lean 4 | 32768 | 32 | 128 | 0.002721 | 0.3947 | ort:flash 4 | 32768 | 32 | 128 | 0.002601 | 0.4128 | ort:efficient 4 | 32768 | 32 | 128 | 0.002434 | 0.4411 | ort:lean 4 | 65536 | 16 | 64 | 0.001231 | 0.4361 | ort:flash 4 | 65536 | 16 | 64 | 0.003238 | 0.1658 | ort:efficient 4 | 65536 | 16 | 64 | 0.001217 | 0.4412 | ort:lean 4 | 65536 | 32 | 128 | 0.005357 | 0.4009 | ort:flash 4 | 65536 | 32 | 128 | 0.005118 | 0.4196 | ort:efficient 4 | 65536 | 32 | 128 | 0.004781 | 0.4492 | ort:lean 16 | 512 | 16 | 64 | 0.000098 | 0.1724 | ort:flash 16 | 512 | 16 | 64 | 0.000104 | 0.1616 | ort:efficient 16 | 512 | 16 | 64 | 0.000118 | 0.1420 | ort:math 16 | 512 | 16 | 64 | 0.000087 | 0.1926 | ort:lean 16 | 512 | 32 | 128 | 0.000220 | 0.3062 | ort:flash 16 | 512 | 32 | 128 | 0.000208 | 0.3237 | ort:efficient 16 | 512 | 32 | 128 | 0.000237 | 0.2838 | ort:math 16 | 512 | 32 | 128 | 0.000209 | 0.3216 | ort:lean 16 | 1024 | 16 | 64 | 0.000136 | 0.2465 | ort:flash 16 | 1024 | 16 | 64 | 0.000150 | 0.2235 | ort:efficient 16 | 1024 | 16 | 64 | 0.000148 | 0.2266 | ort:math 16 | 1024 | 16 | 64 | 0.000129 | 0.2611 | ort:lean 16 | 1024 | 32 | 128 | 0.000367 | 0.3663 | ort:flash 16 | 1024 | 32 | 128 | 0.000351 | 0.3829 | ort:efficient 16 | 1024 | 32 | 128 | 0.000400 | 0.3357 | ort:math 16 | 1024 | 32 | 128 | 0.000349 | 0.3853 | ort:lean 16 | 2048 | 16 | 64 | 0.000209 | 0.3206 | ort:flash 16 | 2048 | 16 | 64 | 0.000243 | 0.2762 | ort:efficient 16 | 2048 | 16 | 64 | 0.000201 | 0.3338 | ort:lean 16 | 2048 | 32 | 128 | 0.000671 | 0.4002 | ort:flash 16 | 2048 | 32 | 128 | 0.000645 | 0.4163 | ort:efficient 16 | 2048 | 32 | 128 | 0.000642 | 0.4185 | ort:lean 16 | 4096 | 16 | 64 | 0.000360 | 0.3732 | ort:flash 16 | 4096 | 16 | 64 | 0.000425 | 0.3162 | ort:efficient 16 | 4096 | 16 | 64 | 0.000341 | 0.3933 | ort:lean 16 | 4096 | 32 | 128 | 0.001292 | 0.4156 | ort:flash 16 | 4096 | 32 | 128 | 0.001251 | 0.4291 | ort:efficient 16 | 4096 | 32 | 128 | 0.001241 | 0.4327 | ort:lean 16 | 8192 | 16 | 64 | 0.000666 | 0.4030 | ort:flash 16 | 8192 | 16 | 64 | 0.000804 | 0.3339 | ort:efficient 16 | 8192 | 16 | 64 | 0.000627 | 0.4283 | ort:lean 16 | 8192 | 32 | 128 | 0.002541 | 0.4226 | ort:flash 16 | 8192 | 32 | 128 | 0.002454 | 0.4376 | ort:efficient 16 | 8192 | 32 | 128 | 0.002438 | 0.4405 | ort:lean 16 | 16384 | 16 | 64 | 0.001292 | 0.4156 | ort:flash 16 | 16384 | 16 | 64 | 0.001571 | 0.3417 | ort:efficient 16 | 16384 | 16 | 64 | 0.001217 | 0.4411 | ort:lean 16 | 16384 | 32 | 128 | 0.005042 | 0.4260 | ort:flash 16 | 16384 | 32 | 128 | 0.004859 | 0.4420 | ort:efficient 16 | 16384 | 32 | 128 | 0.004827 | 0.4449 | ort:lean 16 | 32768 | 16 | 64 | 0.002537 | 0.4233 | ort:flash 16 | 32768 | 16 | 64 | 0.003103 | 0.3461 | ort:efficient 16 | 32768 | 16 | 64 | 0.002385 | 0.4501 | ort:lean 16 | 32768 | 32 | 128 | 0.009961 | 0.4312 | ort:flash 16 | 32768 | 32 | 128 | 0.009605 | 0.4472 | ort:efficient 16 | 32768 | 32 | 128 | 0.009524 | 0.4510 | ort:lean 16 | 65536 | 16 | 64 | 0.005019 | 0.4279 | ort:flash 16 | 65536 | 16 | 64 | 0.006133 | 0.3502 | ort:efficient 16 | 65536 | 16 | 64 | 0.004703 | 0.4566 | ort:lean 16 | 65536 | 32 | 128 | 0.019746 | 0.4350 | ort:flash 16 | 65536 | 32 | 128 | 0.019027 | 0.4515 | ort:efficient 16 | 65536 | 32 | 128 | 0.018864 | 0.4554 | ort:lean ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. -->
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Automated changes by create-pull-request GitHub action